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CHAPTER 1: BACKGROUND  

This chapter proposes the techniques identified to address each stated objective. The 

methodology is divided into two sections. The first section describes PCA and APCA 

approaches. The second section describes GMM and PCA-based GMM approaches.  

1.1 Overview  

The APCA approaches are suitable for monitoring of process exhibiting behaviours that change 

slowly over time (for which PCA is deficient). These approaches seek to maintain a monitoring 

model with detection thresholds that are representative of the current process state. This is done 

by periodically incorporating new NOC data.  

The PCA-based GMM method addresses the objective of monitoring of multimodal processes. 

The approach follows the approach of PCA but builds more than one monitoring model to 

monitor each observation by the model that best describes it. This avoids generalizing of 

detection thresholds over all modes, which proves to be problematic in the PCA and APCA 

methods.     

Figure 3.1 presents a simple flow diagram showing how a monitoring approach is made 

adaptive by adding new observations to the model data which builds the monitoring model 

(when deployed online). Figure 3.2 presents a simple flow diagram showing the individual 

monitoring models of GMM and PCA.  

 

Figure 1.1: Adaptation of the monitoring model (for an approach) by the addition of new 

observations test datum) to the model data. 
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Figure 1.2: Monitoring approaches for GMM (left) (for r number of modes) and PCA (right) 

showing the individual monitoring models. 

1.2 PCA  

1.2.1 Overview 

PCA (Jolliffe, 2002) as a framework for fault detection allows the monitoring of observations 

in a feature space of reduced dimension (Russel, Chiang, and Braatz, 2000; Kourti, 2002; 

Shlens, 2009; Kruger et al., 2012).  

The overall implementation involves splitting a NOC data into a training and validation data. 

The training data is used for model development and the validation data is then used to test the 

generalisability of the derived model parameters and monitoring statistics and tuning the 

hyperparameters.  The hyperparameter tuning is better with test data if it is available to assess 

how the model performs in presence of specific faults.  The developed model is then deployed 

online for monitoring new observations. The conceptual diagram for process monitoring using 

PCA is illustrated in Figure 1.3.  

The monitoring strategies involve using the scores and the reconstructed data. This is done via 

the modified Hotelling’s T2 statistic and SPE respectively. Figure 3.4 provides a view of how 

the monitoring statistics are applied in combination with PCA for a simple two-dimensional 

example. The figure shows how the normalized data1 in the original input space is transformed 

into the lower dimensional feature space by finding the PCs and retaining the ones with the 

highest explained variance (which is highlighted by the dashed-red line in this case). The 

derivation of the model parameters and relevant monitoring statistics are presented in the next 

subsection.  

 

                                                 
1 Normalized data as used in this work defines data that the variables are centered and scaled such that the resulting 

data has a mean of zero and standard deviation of one.  
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Figure 1.3: Conceptual diagram for fault detection using PCA. 

 

 

Figure 1.4: Pictorial view of dimension reduction of normalized 2-D data to 1-D by projection 

onto the first PC. A sample original observation which is highlighted as a blue circle transforms 

to a green star in the reduced space.   

1.2.2 Algorithm 

The derivation of the model parameters for PCA involves the calculation of the PCs and their 

respective variances. These can be obtained by or from the singular value decomposition (SVD) 

of the normalized training data or via the eigendecomposition of the correlation matrix.  
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The eigendecomposition of the correlation matrix is used in this work and presented below. 

The raw data n×m matrix, D ϵ Rn×m, is normalized and decomposed as: 

Normalizing the input  

1. For the input data matrix D, with n observations and each of the m columns representing 

a measured variable, let 𝜇𝑗 denote the mean of the j-th variable: 

                                           
𝜇𝑗 =

∑ 𝑑𝑖,𝑗
𝑛
𝑖=1

𝑛
 

3-1 

2. Calculate the standard deviation of the j-th variable, 𝜎𝑗: 

                                           

𝜎𝑗 = √∑ (𝑑𝑖,𝑗 − 𝜇𝑗)
2𝑛

𝑖=1

𝑛
 

3-2 

3. Each variable is normalized. The variable value for each observation is centred by 

subtracting the variables mean 𝜇𝑗 and scaling the result by dividing it by its standard 

deviation 𝜎𝑗: 

                                           
𝑥𝑖,𝑗 =

𝑑𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
 

3-3 

Here 𝑥𝑖,𝑗 and 𝑑𝑖,𝑗 are respectively the normalized and original ith sample of the jth variable. The 

result of normalizing data matrix D is data matrix X ϵ Rn×m.  

Computing the correlation matrix  

The correlation matrix, C ϵ Rm×m, for the normalized data, X, is computed as:  

                                           
𝑪 =

1

𝑛
𝑿𝑇𝑿 

 3-4 

Computing the loading vectors by using eigen-decomposition 

Next eigendecomposition of the correlation matrix is performed by solving the eigenvalue 

equation: 

 𝑪𝑷 = 𝝀𝑷 3-5 

P ϵ Rm×m and λ ϵ R1×m respectively represent the matrix of eigenvectors and the vector of 

eigenvalues produced as solutions.  

Retaining first υ loading vectors with largest eigenvalues 
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The fraction of variance in the normalized data matrix accounted for by a PC is computed as 

shown in Equation 3-7. 

 𝜆𝑖

Σ𝜆𝑖
. 3-7 

Thus using the υ PCs corresponding to the 𝜐 largest eigenvalues collectively account for some 

fraction 𝐿υ:  

 
   𝐿𝜐  =

∑ 𝜆𝑖
υ 
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

 
3-8 

�̂� ϵ Rm×υ and �̂� ϵ R1×υ respectively represent the PCs and variances retained once υ is decided. 

Computing the retained scores 

The score matrix �̂� is next computed as:  

 �̂� = 𝑿�̂� 
 
 3-6 

Reconstruction 

The transformation of the score matrix back into the original dimensional observational space 

can now be computed as in Equation 3-9.  

 �̂� = �̂� (�̂�)
𝑇
 3-9 

Here �̂� ϵ Rn×m represents this reconstructed data generated from the scores. Note the error 

introduced by discarding the eigenvectors. 

Reconstruction error  

The difference between the normalized input data and the reconstructed data is the 

reconstruction error and denoted by 𝑬: 

 𝑬 = 𝑿 − �̂� 3-10 

1.2.3 Monitoring statistics and control limits 

Monitoring using PCA involves the use of the SPE (Q) and Hotelling’s T2 statistics for the 

retained loadings, which will be called the modified Hotelling’s T2 statistic and denoted by �̂�2. 

Let q denote the vector of SPE statistics for all observations. The SPE for the observation i is 

then 𝑞𝑖 and computed by: 
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 𝑞𝑖 = ∑ (𝑥𝑖,𝑗 − �̂�𝑖,𝑗)
2𝑚

𝑗=1 , 3-11 

while the computation of �̂�2 for the first υ scores of observation i is given by: 

 
(�̂�2)𝑖 = ∑

(�̂�𝑗)
2

𝜆𝑗

𝜐

𝑗=1

 
3-12 

where �̂�𝑗 is the j-th column entry of the score matrix �̂� .  

Equation 3-11 can intuitively be seen as the difference between an observation 𝑥𝑖 and its 

reconstructed value �̂�𝑖. The reconstructed value here is mentioned earlier in Figure 3.4 as the 

position in the reduced space.  

The modified Hotelling’s T2 statistic control limit, (�̂�2)𝛼, is calculated from the critical value 

of an F-distribution (Russell, Chiang and Braatz, 2000): 

 
(�̂�2)𝛼  =  

𝜐(𝑛 − 1)(𝑛 + 1)

𝑛(𝑛 − 𝜐)
 𝐹𝛼(𝜐, 𝑛 − 𝜐) 

3-13 

Here, 𝐹𝛼(𝜐, 𝑛 − 𝜐) represents the upper 100α % critical point of the F-distribution with υ and n 

- υ degrees of freedom, with n being the number of observations. The degrees of freedom are 

impacted by the number of retained components 𝜐 and observations n. 

The detection limit for Q statistic with a significance level α as approximated by Jackson and 

Mudholkar (1979) is: 

 

𝑞𝛼 = φ1 [
ℎ𝑜ẕ𝛼 √2φ2

φ1
+ 1 +

φ2ℎ𝑜(ℎ𝑜 − 1)

φ1
2 ]

1
ℎ𝑜

 

 

3-14 

 

where φ𝑖 = ∑ 𝜎𝑗
2𝑖𝑛

𝑗=𝜐+1 , ℎ𝑜 = 1 −  
2φ1φ3

3φ2
2  and ẕα is the normal deviate corresponding to the (1 

− α) percentile.  

1.2.4 Fault detection method 

Fault detection involves determining whether a process measurement exhibits normal or 

abnormal behaviour. This is done by normalizing using the means and standard deviations of 

each input dimension and then projecting using the retained PCs identified during training.  

The modified Hotelling’s T2 and SPE statistics for the new point are computed as shown in 

Equations 3-12 and 3-11 respectively and checked against the calculated thresholds, (𝑡𝐴
2)𝛼 

and 𝑞𝛼. The observation is deemed to be abnormal if it is beyond the detection thresholds for 

one or both of the statistics.  
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Due to the random nature of observations, a consecutive number of observations must be over 

the threshold to increase the confidence in a fault occurring before an alarm is triggered, usually 

three observations (Choi, Park and Lee, 2004; Choi et al., 2005; Ayech, Chakour and Harkat, 

2012).  

The next section considers RePCA which is an APCA approach.   

1.3 RePCA  

1.3.1 Overview  

RePCA (Li et al., 2000) and MWPCA (Wang, Kruger and Irwin, 2005) (presented in Section 

3.4) are the APCA methods considered in this work. RePCA has a similar algorithm as 

conventional PCA but updates the retained model each time an observation becomes available. 

In doing so, the method attempts to capture the most recent data variation to adapt to normal 

process changes and thereby reduce false alarms. RePCA seeks to address the issue of slow 

changes that vary over time that occur in process industries, which cannot be predicted or 

accounted for during the development of the monitoring model.  

The assumption is that most of the new observations from slow drift are NOC data.  

1.3.2 Algorithm 

The RePCA methodology involves augmenting the initial model with new observations. This 

changes the correlation matrix and the subsequent parameters derived from the correlation 

matrix. For the data window initially with n observations, the model parameters are computed 

following the same procedure of PCA as listed in Section 3.2.2. Adding a new observation to 

the data window increases the number of observations to 𝑛 + 1 and the correlation matrix is 

updated as presented in the next section.  

1.3.2.1 Adaptation of the correlation matrix 

As the data window (initially set at the outset) is augmented with a new observation, changes 

occur in the means and standard deviations of the process variables which impact the correlation 

matrix of the data window. The changes in the properties as a result of the augmentation is 

described as follows:  

Computing new mean, variance and correlation matrix  

For some variable w, let its previous (initial), current and updated (next) values be denoted 

by 𝑤𝑘−1,𝑤𝑘, and 𝑤𝑘+1 respectively. Also, let the diagonal matrix of some mean 𝛔 be denoted 

by 𝚺.  For the data window, the initial mean 𝝁𝑘, initial variance 𝛔𝑘
2  and the initial correlation 

matrix 𝑪𝑘 are updated for a new observation 𝒅𝑘+1 as:   



8 

 

 
𝝁𝑘+1  =  

𝑛(𝝁𝑘) + 𝒅𝑘+1  

𝑛 + 1
 

3-15 

       𝛔𝑘+1
2    =  

𝑛

𝑛+1
𝛔𝑘

2 +  
1

𝑛+1
(𝒅𝑘+1 − 𝝁𝑘+1)2 + (𝝁𝑘+1 − 𝝁𝑘)2 3-16 

                                           
𝒙𝑘+1 =  

𝒅𝑘+1 − 𝝁𝑘+1

 𝝈𝑘+1
 

𝑪𝑘+1 =
𝑛

𝑛 + 1
𝜮𝑘+1

−1 𝚺𝑘𝑪𝑘𝚺𝑘𝜮𝑘+1
−1 + 𝜮𝑘+1

−1 (Δ𝝁)𝑇(Δ𝝁) 𝜮𝑘+1
−1

+
1

𝑛 + 1
𝒙𝑘+1

𝑇 𝒙𝑘+1 

  3-17 

 

 

  3-18 

where Δ𝝁 =  𝝁𝑘+1 −  𝝁𝑘.  

The updated correlation matrix 𝑪𝑘+1 provides a new basis to compute new model parameters 

and also monitoring statistics and their critical values. The decomposition of the new correlation 

matrix follows the method outlined in conventional PCA.  

1.3.3 Monitoring statistics and adaptation of control limits 

RePCA implements the same monitoring statistics as that of conventional PCA. The 

computation of monitoring statistics for the updated window follows the same method as that 

outlined for conventional PCA in Section 3.2.3  but with updated model parameters. 

1.3.4 Fault detection method 

RePCA follows the same fault detection procedure as in the conventional PCA (see Section 

3.2.4). The difference, in this case, is that the threshold changes at each time interval as the 

model updates. In order for an observation to exhibit NOC, the monitoring statistics at each 

interval is checked against their corresponding thresholds to make sure they are not beyond 

their respective thresholds. 

1.3.5 Conditions to update model 

The decision to update a model depends on some heuristics to establish if the observation under 

analysis is worth a model update. The three common update techniques available are presented 

as follows:  

The first update method (UM-1) updates the model if no alarm is triggered for a consecutive 

number of observations. For example, irrespective of the value of z, if at least one observation 

of the z observations has both the SPE and T2 statistic below their respective thresholds, the 

model is updated (Zhao, Xu, and Zhang, 2004; Jeng, 2010).  
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The second update method (UM-2) prevents the update of the model if any of the current 

observation’s statistics (SPE and T2 in this case) are out of control. That is, it is independent of 

the z value (Xia, Chu, and Geng, 2013).   

The third update method (UM-3) requires that z observations for both of the monitoring 

statistics (SPE and T2) must be in control before an update can occur. To put things in 

perspective, UM-3  is a special case of  UM-2 with z = 1 (Tien, 2005; Zhou et al., 2016).   

The next section presents the MWPCA which is the other APCA approach considered. 

1.4 MWPCA 

1.4.1  Overview 

In contrast to RePCA, MWPCA adapts to new observations while using a fixed window size of 

data. This is achieved by dropping old observations as new ones are added. Wang, Kruger, and 

Irwin (2005) first developed MWPCA which ensures constant adaptation speed and quick 

response to changes and called it fast MWPCA. Figure 1.5 shows how the training data window 

gets updated with new observations for the two approaches.  

 

Figure 1.5: Differences in model update methods for RePCA and MWPCA. 

1.4.2 Algorithm 

The MWPCA algorithm follows the approach described for RePCA but with a fixed window 

size of data. The updated window follows an eigendecomposition method to derive the updated 

model parameters.  
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The modification here is the removal of the oldest observation from the current data window to 

create a down-dated data window before adding the newest observation to create an updated 

window. The changes in the correlation matrix as a result of updating the window is described 

as follows: 

Removing the oldest observation (down-dating)    

Removing the oldest observation 𝒅1 creates a down-dated (previous) mean, variance and 

correlation matrix. As stated previously, let the diagonal matrix of some mean 𝛔 be denoted by 

𝚺. Also for some variable w, let its previous (initial), current and updated (next) values be 

denoted by 𝑤𝑘−1,𝑤𝑘, and 𝑤𝑘+1 respectively. The down-dated mean 𝝁𝑘−1, variance 𝛔𝑘−1
2  and 

correlation matrix 𝑪𝑘−1 are computed as:   

               𝝁𝑘−1 =  
𝑛(𝝁𝑘)−𝒅1  

𝑛−1
 3-19 

 

 𝛔𝑘−1
2    =  

𝑛

𝑛−1
𝛔𝑘

2 −  
𝑛

𝑛−1
Δ𝝁1

2 − 
1

𝑛−1
(𝒅1 − 𝝁𝑘)2  3-20 

 

 𝑪𝑘−1 =
𝑛

𝑛 − 1
𝜮𝑘+1

−1 𝚺𝑘(𝑪𝑘 − 𝜮𝑘
−1) (Δ𝝁1)𝑇(Δ𝝁1)𝜮𝑘

−1

−  
1

𝑛
𝒙𝑘−1

𝑇 𝒙𝑘−1𝚺𝑘𝜮𝑘+1
−1  

 3-21 

where Δ𝝁1 =  𝝁𝑘−1 − 𝝁𝑘.   

Adding a new observation (updating)  

Adding a new observation 𝒅𝑘+1 creates an updated mean 𝝁𝑘+1, variance 𝛔𝑘+1
2   and correlation 

matrix 𝑪𝑘+1 which are computed as: 

               𝝁𝑘+1 =  
(𝑛−1)(𝝁𝑘−1) + 𝒅𝑘+1

𝑛
    3-22 

 

 𝛔𝑘+1
2    =  

𝑛−1

𝑛
𝛔𝑘−1

2 +  (Δ𝝁2)2 +  
1

𝑛
(𝒅𝑘+1 − Δ𝝁2)2  3-23 

 

 
𝑪𝑘+1 =

𝑛 − 1

𝑛
𝜮𝑘+1

−1 𝚺𝑘−1𝑪𝑘−1𝚺𝑘−1𝜮𝑘+1
−1 + 𝜮𝑘+1

−1  (Δ𝝁2)𝑇(Δ𝝁2)𝜮𝑘+1
−1

+
1

𝑛
𝒙𝑘+1

𝑇 𝒙𝑘+1 

 

3-24 

where Δ𝝁2 =  𝝁𝑘+1 − 𝝁𝑘−1.  
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Same as RePCA, the updated correlation matrix 𝑪𝑘+1 provides a new basis to compute new 

model parameters and also monitoring statistics and their critical values. 

1.4.3 Monitoring statistics and adaptation of control limits 

MWPCA implements the same monitoring statistics as that of the conventional and RePCA. 

The computation of monitoring statistics for the updated window follows the same method as 

outlined for conventional PCA in Section 3.2.3  but with changing retained PCs υ over time. 

1.4.4 Fault detection method 

MWPCA follows the same fault detection procedure as RePCA in Section 3.5.4. 

The next section considers the GMM which is a multimodal approach.  

1.5 GMM 

1.5.1 Overview 

GMM (Yan, Hyewon and Soohyun, 2008; Yu, 2012) is a common machine intelligence 

technique used for modelling data. GMM describes complex process data as a mixture of a 

number of local Gaussian models and learns the underlying distributions in data. Such learned 

models may help account for nonlinearity and multimodal features as may be experienced in 

process industries.   

The overall GMM procedure we use involves splitting NOC data into a training and a validation 

dataset. While the training data is used for the development of the model, the validation data 

serves to help in the selection of the hyperparameters of the derived model and its monitoring 

statistics. The developed model is then deployed online for monitoring of new observations.  

Monitoring using GMM is a multimodal approach (which finds multiple clusters) in contrast to 

the PCA approach which assumes there is a single cluster in the training data (and therefore a 

unimodal approach is used). The monitoring statistic employed in GMM is the probability value 

of an observation. This specifies how closely an observation follows the model created by the 

GMM training data.  

The procedure of learning the model parameters and determining relevant monitoring statistics 

is presented in the next sections.  

1.5.2 Algorithm 

For a given dataset D ϵ Rn×m with m process variables, the observations are assumed to come 

from some number r of possible operating conditions. The value of r specifies the expected 

number of clusters in the data. Assuming the observations are independent and identically 
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distributed, the probability density function (PDF) for an observation d denoted by p(d) is a 

weighted sum of the Gaussian PDFs 𝑔1, 𝑔2, …, 𝑔𝑟 and it is computed as:   

 
𝑝(𝒅) = ∑ ϱ𝑗𝑔𝑗(𝒅|𝝁𝑗, 𝑺𝑗)

𝑟

𝑗=1 

 
3-25 

Here, 𝑺𝑗  and 𝝁𝑗 are respectively the covariance matrix and the mean of the jth mixture 

component.  

For a normal distribution, the parameter list 𝜽 that defines the Gaussian mixture density consists 

of the cluster means 𝝁1,  𝝁2, …, 𝝁𝑟, the cluster covariance matrices 𝑺1, 𝑺2, …, 𝑺𝑟 and the 

cluster weights 𝜚1, 𝜚2, …, 𝜚𝑟, as shown in Equation 3-26. 

 𝜽 =  (𝜚1,  𝝁1, 𝑺1,…, 𝜚𝑟,  𝝁𝑟, 𝑺𝑟)   3-26  

 

The mixture weights of the jth component are 𝜚𝑗, whereby 0 ≤ 𝜚𝑗 <1 is true for all components, 

and ∑ 𝜚𝑗 = 1𝑟
𝑗=1 . The mixture weight 𝜚𝑗 represents the probability that a new observation 

belongs to the cluster j. Figure 3.6 shows a fitted Gaussian mixture density for some data with 

two modes.  

 

The individual component densities are described by normal distribution PDFs: 𝑔𝑗 given by 

Equation 3-27. 

 𝑔𝑗(𝒅|𝝁𝑗 , 𝑺𝑗) =  |2π𝑺𝑗|−0.5 × exp[−0.5(𝒅 − 𝝁𝑗)
𝑇

𝑆𝑗
−1(𝒅 − 𝝁𝑗)]   3-27 
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Figure 1.6: An example of Gaussian mixture density fitted to t data with two clusters. 

Learning the values of 𝜽 (with the size dependent on the number of clusters) that describe D 

involves estimation of the parameters that best fit the data. The procedure for estimating the 

Gaussian mixture density is presented next.  

1.5.2.1 Estimation of Gaussian mixture density 

Estimation involves evaluation of how well the postulated distribution with estimated 

parameters represents the data (or how confident are we that the postulated distribution 

generated the data). The measure of how well the estimated parameters fit the data is termed 

the likelihood. The likelihood of the derived parameters given the data 𝐿(𝜽|𝑫) is defined as a 

product of conditional probability density functions and is formulated as shown in Equation 

3-28. 

 
𝐿(𝜽|𝑫) = ∏ 𝑝(𝒅𝑖|𝜽)

𝑛

𝑖=1
 

3-28  

The aim of the estimation process is to find a value for 𝜽 that maximizes the likelihood function, 

denoted as 𝜽∗: 

  𝜽∗ =  arg max
𝛉

𝐿(𝜽|𝑫)  3-29 

Taking the log of the likelihood function in Equation 3-28, yields Equation 3-30 transforming 

the product of potentially small likelihoods into a sum of logs, which is easier to distinguish 
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from 0 in computation. The Equation in 3-30 is therefore maximized instead of the likelihood 

function in Equation 3-28 because it is computationally easier to handle.    

 

 

log𝐿(𝜽|𝑫) =  ∑ log

𝑛

𝑖=1

(∑ 𝜚𝑗𝑔𝑗(𝒅𝑖|𝝁𝑗, 𝑺𝑗)

𝑟

𝑗=1 

) 

 

3-30 

Finding 𝜽∗cannot be analytically solved by taking the derivative of this log-likelihood function 

and setting it to zero. This is because the approach has no closed form solution and is intractable. 

The log likelihood function is rather numerically optimized using the expectation maximization 

(EM) algorithm, which is an iterative procedure that moves from an initial guess of the 

parameter estimates 𝜽𝑡 to locally optimal parameter estimates 𝜽∗.  

 

The EM algorithm is presented in the next section. 

1.5.2.2 EM Algorithm 

The EM algorithm (Dempster, Laird and Rubin, 1977) is an iterative method for finding the 

maximum parameter estimates for the likelihood distribution of incomplete data. It is used in 

maximum likelihood estimation of the GMM where an analytical approach is not possible.  

 

The EM algorithm introduces hidden/latent variables ẑ for each observation such that 

knowledge of the latent variables would simplify the maximization of the likelihood. 

Consequently, the known data D is interpreted as incomplete data. The missing part Ẑ provides 

knowledge of which cluster produced each observation 𝒅. As a result, for each observation 𝒅, 

there is a one-hot binary vector ẑ = [ẑ1, ẑ2, . . ., ẑ𝑟], where ẑ𝑗= 1, if the observation was produced 

by cluster j, or ẑ𝑗= 0 if not. The complete data (i.e. the observed data D and the hidden data Ẑ) 

log-likelihood is subsequently formulated as shown in Equation 3-31. 

 
log𝐿(𝜽|𝑫, Ẑ) =  ∑ ∑ ẑ𝑖𝑗log {𝜚𝑗𝑔𝑗(𝒅𝑖|𝝁𝑗, 𝑺𝑗)

𝑟

𝑗=1 

𝑛

𝑖=1

} 
3-31 

 

The iterative process of EM algorithm consists of two procedures, which is the expectation step 

and the maximization step. The expectation step (E-step) computes the distribution of the latent 

variables given the current parameter estimates and the data. Let ᵹ𝑖𝑗 denote the expectation of 

observation 𝒅𝑖 belonging to the jth cluster for the current model parameter estimates. The ᵹ𝑖𝑗 

called “responsibilities” is computed as: 
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ᵹ𝑖𝑗  =  

𝜚𝑗𝑔𝑗(𝒅𝑖|𝝁𝑗, 𝑺𝑗)

∑ 𝜚𝑝𝑔𝑝(𝒅𝑖|𝝁𝑝, 𝑺𝑝)𝑟
𝑝=1

 
3-32 

The maximization step (M-step) computes the updated values of the parameter estimates given 

the current estimated posterior probabilities.  

 

 
𝜚𝑗

𝑡+1 =  
1

𝑛
 ∑ ᵹ𝑖𝑗  

𝑛

𝑖=1
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μ𝑗

𝑡+1  =  
∑ ᵹ𝑖𝑗 𝑛

𝑖=1 𝒅𝑖

∑ ᵹ𝑖𝑗  𝑛
𝑖=1

 
3-34 

 

 
𝑺𝑗

𝑡+1 =  
∑ ᵹ𝑖𝑗 (𝑛

𝑖=1 𝒅𝑖 − 𝜇𝑗
𝑡+1 )(𝒅𝑖 − 𝜇𝑗

𝑡+1 )𝑇

∑ ᵹ𝑖𝑗  𝑛
𝑖=1  
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Equation 3-33 can be interpreted as updating the mixture weights 𝜚𝑗 of cluster j by computing 

the proportion of the observations that belong to that cluster. This is obtained by computing the 

cluster PDF with the previous estimates of the parameters (see Equation 3-27) and then 

calculating the average of the posterior probabilities of each sample point belonging to the 

component j (see Equation 3-32). Equation 3-34  can be interpreted as updating the mean 𝜇𝑗 of 

a cluster by weighting the observations by their probability of being part of that cluster.  

Equation 3-35 can likewise be interpreted as updating the covariance matrix 𝑺𝑗 of a cluster by 

weighting the observations by their probabilities of being part of that cluster. 

 

Initiation of the EM algorithm requires the number of clusters r and the initial parameter 

estimates (𝜽𝑡) to be specified. Determining the number of clusters objectively involves fitting 

the data to a plausible number of components and thereafter selecting the best fitting model. 

The maximum number of clusters rmax to be considered so as to bound the search space is 

determined by an empirical relationship given by Bozdooan (1994) as:  

 𝑟𝑚𝑎𝑥 =  𝑛0.3 3-36 

Here, 𝑛 refers to the number of observations. 

 

Initialization and convergence of EM  

Since the EM algorithm iterates between finding the clusters and responsibilities for each 

observation, the EM can therefore either be initialized using the responsibilities or cluster 
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assignments from which the initial parameter estimates (𝜽𝑡) can be deduced. The initial cluster 

assignments can be done by randomly assigning observations to the clusters or by using k-

means clustering (Hartigan and Wong, 1979) algorithm (among other approaches) which is a 

more effective approach. The k-means clustering algorithm basically groups n observations 

into k clusters (which is r clusters in this case) in which each observation belongs to 

the cluster with the closest mean. (Generally, good estimates for the covariance matrices would 

be the within-cluster covariances, and that for the mixing weights would be the fractions of data 

points belonging to each cluster.) 

 

The EM algorithm is basically said to converge (locally) when there is no change in the previous 

and current iteration values for the parameters estimates. Since this is not always achieved, a 

tolerance level (τ) is defined such that any difference of the previous and current estimates of 

the parameters are deemed not significant when they are below the value of τ.  Convergence 

can, therefore, be said to be achieved in such case.  

 

Apart from specifying the number of clusters, the covariance structures are a major concern in 

adequately describing the data to ensure a good fit. The covariance structures considered are 

discussed next.   

1.5.2.3 Covariance structure model  

As with the number of clusters, the covariance structures of the GMM component can take a 

number of different shapes, volumes (defined by the eigenvalues of the covariance matrix) and 

orientations (defined by the eigenvectors of the covariance matrix)  as shown in the earlier work 

of Bozdooan (1994) and subsequent investigation by (Celeux and Govaert, 1995).  The general 

covariance structure type is the full covariance structure which allows the variation of the 

ellipsoids in terms of all the axes as well as the volume and orientations. For a more 

parsimonious model, the diagonal covariance matrices are desired. In contrast to full covariance 

matrices which indicate that the variables are correlated, diagonal covariance matrices allow 

for uncorrelated variables. The correlation, therefore, places no restriction on the elliptical 

orientations of the full covariance matrices, while the major and minor axes of the ellipsoids of 

the diagonal covariance matrices have parallel or perpendicular axes (for e.g. the x and y axes 

in a 2-D case). Accordingly, the diagonal covariance matrices are more parsimonious than the 

full covariance matrices.  
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Apart from the orientation of the ellipsoids (in terms of the axes), the volume of the covariance 

matrices is also a consideration to be made (Erar, 2011). The restricted and unrestricted 

covariance types are the two generalizations of the orientations and volumes taken by the 

covariance matrices. While the restricted covariance matrices indicate that all cluster 

components are identical, the unrestricted covariance matrices may be unidentical. That is to 

say, the covariance matrices of the restricted case may be the same, as opposed to the 

unrestricted case, where they might differ. Figure 3.7 shows the various orientations and 

volumes for the diagonal and full matrices for cases in which they are unrestricted and restricted 

(for a two-dimensional case). 

 

The diagonal and full covariance matrices are considered in this work. This raises the number 

of plausible covariance matrix types to four. For each covariance model mixture type, the 

number of parameters to be estimated is denoted by ɦ. The formulation of ɦ is as shown in 

Equation 3-37. 

 ɦ =  𝛾 +  ɣ 3-37 

γ is the number of parameters of the means μ and mixing proportions 𝜚 whereas ɣ is the number 

of parameters in the covariance matrix. While the γ is same and equal to 𝑟𝑚 + 𝑟 − 1  for all 

covariance types, ɣ values differ for the various model types and are presented in Table 1. 

Table 1: The various covariance shapes and the respective estimated number of parameters. 

Covariance Parameters (𝜽) ɣ 

Diagonal-restricted 𝜚1, 𝝁1, 𝑺, 𝜚2, 𝝁2, 𝑺, … , 𝜚r, 𝝁r, 𝑺 𝑚 

Diagonal-unrestricted 𝜚1, 𝝁1, 𝑺1, 𝜚2, 𝝁2, 𝑺2, … , 𝜚r, 𝝁r, 𝑺𝑟 𝑟𝑚 

Full-restricted 𝜚1, 𝝁1, 𝑺, 𝜚2, 𝝁2, 𝑺, … , 𝜚r, 𝝁r, 𝑺 𝑚(𝑚 + 1)/2 

Full-unrestricted 𝜚1, 𝝁1, 𝑺1, 𝜚2, 𝝁2, 𝑺2, … , 𝜚r, 𝝁r, 𝑺𝑟 𝑟𝑚(𝑚 + 1)/2 

 

Taking the covariance structure types into consideration extends the clustering problem from 

the number of clusters to include the covariance structures as well. Therefore, a model selection 

criterion is required to select the best model for all the number of clusters and the respective 

plausible covariance models. Selection of the best model that describes the data is presented in 

the next section. 
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Figure 1.7: An example of different clustering results for the listed covariance structures. 

1.5.2.4 Model Selection 

In GMM and other clustering approaches, the number of clusters is generally not known.    

Selection of the most appropriate model then requires identifying and comparing suitable 

criteria.  The aim of using such criteria is usually to provide a balance between goodness of fit 

of the data to the model and parsimony of the selected model.  

Bayesian information criteria (BIC) (Schwarz, 1978) and Akaike’s information criteria (AIC) 

(Akaike, 1973) are two popular model selection criteria that are used for model selection 

(Bozdogan, 2000).  

The formulae for the AIC and BIC are given in Equations 3-38 and 3-39 respectively.  

 

 AIC =  −2log𝐿(𝜽∗|𝑫)  +  2ɦ  3-38 

 

 BIC =  −2log𝐿(𝜽∗|𝑫)  +  ɦ log(𝑛) 3-39 

 

In the formulae, n is the number of observations, ɦ is the number of independent parameters to 

be estimated (see Equation 3-37) and 𝜽∗ denotes the EM approximates of the maximum 

likelihood estimate of the parameters.  
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As shown from the AIC and BIC formulations, both methods penalize the log-likelihood in the 

same manner, but the BIC penalizes model complexity more severely than the AIC. 

Consequently, the BIC tends to select simpler models that might underfit the data. The AIC, on 

the other hand, selects more complex models that might overfit the data (Posada and Buckley, 

2004).    

As mentioned by Yu (2011), deciding on the best criterion involves using prior experimental 

work which considers the prediction of the ‘true’ number of clusters by both methods. 

Accordingly, prior experimental work produced alternating results between the BIC and AIC 

as the best model selection criterion (more for BIC). This led to the introduction of the minimal 

best AIC and BIC criterion denoted by mAB in this work and determined next. 

  

Let BICb represent the model with the lowest (best) BIC score. The corresponding AIC score 

for the same model is denoted as AICc. Accordingly, that for the lowest (best) AIC score and 

the corresponding BIC score are respectively denoted as AICb and BICc. The absolute distance 

between AICc and BICb is denoted by ℎ1 while that between AICb and BICc is denoted by ℎ2. 

The formulae for ℎ1 and ℎ2 are respectively shown in Equations 3-40 and 3-41. 

 

 ℎ1  =  |𝐵𝐼𝐶𝑏 − 𝐴𝐼𝐶𝑐|  3-40 

 

 ℎ2  =  |𝐴𝐼𝐶𝑏 − 𝐵𝐼𝐶𝑐|  3-41 

The best model selected thereafter is then the best model producing the minimum value out of 

ℎ1and ℎ2 values. That is if ℎ1 is the minimum value when compared to ℎ2, the model with the 

lowest BIC score (BICb) is selected.  

1.5.3 Monitoring statistics and control limits 

Monitoring using GMM involves the use of the estimated PDF (see Equation 3-25). The PDF 

indicates how close an observation follows the obtained GMM from the training data. The 

negative logarithm of the PDF (NLPDF) values is used rather than the PDF values. This 

consequently transforms the product of potentially small PDF values (close to zero) into a sum 

of logarithms, the result of which is more reliably distinguishable from zero in computation.  

An observation which comes from the same input space as the training data is therefore 

expected to have a lower NLPDF value as compared to a novel observation.  

For every identified cluster, let NLPDFα denote the vector of critical values [NLPDFα1, 

NLPDFα2, …, NLPDFαr]. The critical values for each cluster are computed by taking an 

appropriate percentile of the training data monitoring statistics that belong to each cluster. The 
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observations are assigned to the clusters using the responsibilities (i.e. the cluster with the 

highest responsibility value). (For example, taking the 99th percentile for all observations 

assigned to cluster one as the critical value for cluster one.) The NLPDFα is then employed for 

local monitoring.  

For a global monitoring scheme, NLPDFα represents a single value which is taken as the critical 

value for all the observations (ignoring the cluster assignments). The implementation of local 

monitoring thresholds prevents the limitations associated with an approximation of thresholds 

over all clusters while the global limits the risk of misclassification.  

1.5.4 Fault detection method 

GMM fault detection procedure involves checking if an observation is unusual for the GMM 

model obtained by the training data. This is described by the probability of the observation 

given the model parameters.  

The best GMM is selected using the mAB model selection criterion (see Section 3.5.2.4) from 

a number of plausible GMM models obtained by the training data for the various covariance 

structures options and a number of clusters. The monitoring statistics and critical values are 

computed from fit on training data. For a new observation, the NLPDF is computed for the 

observation and it is checked against its respective threshold (as determined by the highest 

responsibility). The observation is thereafter deemed to be abnormal if it is beyond the detection 

threshold. Like PCA, a z consecutive number of observations beyond the threshold warrants the 

trigger of an alarm. 

The next section considers the PCA-based GMM which is a combination of PCA and GMM. 

1.6 PCA-based GMM  

1.6.1 Overview 

PCA combined with GMM (Choi, Park and Lee, 2004; Yu, 2011) involves the use of PC scores 

T (see Section 3.2.2) as inputs for the GMM. The use of the scores combines the monitoring in 

a lower dimensional feature space (as implemented for PCA) and multimodal monitoring. This 

work would illustrate that clustering using the scores can achieve better clustering results and 

reduce the risk of misclassification which is the main concern in employing local monitoring 

schemes.  

The computation of all relevant statistics and model parameters for PCA-based GMM follow 

the same techniques as described for the GMM. The relevant Equations are updated for the 

PCA-based GMM such that the raw dataset (D) is replaced with the scores (T). For example, 



21 

 

the probability function of the raw data (shown in Equation 3-25) is updated from the raw data 

formulation to the scores formulation as shown in Equation 3-42. 

 
𝑝(𝒕) = ∑ 𝜚𝑗𝑔𝑗(𝒕|𝝁𝑗, 𝑺𝑗)

𝑟

𝑗=1 

 
3-42 

1.6.2 Algorithm 

The PCA-based GMM approach follows the algorithm described for the GMM but using the 

score as input data instead of the original observation vectors. The process of computing the 

scores from the raw data is described in PCA (in Section 3.2.2).  

Once the scores are computed, the decided retained scores (or all the scores) are used as input 

for the GMM development following the subsequent procedure as that followed by the raw data 

in the GMM process shown in Section 3.5.2.  

1.6.3 Monitoring statistics and control limits 

The PCA-based GMM employs the same monitoring statistics and detection thresholds as 

shown for GMM in Section 3.5.3.  

1.6.4 Fault detection 

PCA-based GMM uses the same fault detection method as shown for GMM in Section 3.5.4.  

In summary, this chapter presented the mathematical derivations for unimodal and adaptive 

unimodal monitoring approaches by considering PCA, RePCA, and MWPCA. The multimodal 

approaches are subsequently presented by considering GMM and combination of PCA with 

GMM.    

The next chapter, therefore, considers the way the above-mentioned approaches are applied in 

this work as well as the presentation of APCA-based GMM which is an extension of APCA to 

GMM developed in this work.  
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CHAPTER 2: METHODOLOGY 

This chapter presents the application of the techniques identified to address each stated 

objective. The applications of PCA and APCA approaches as presented. Also, that for GMM 

and PCA-based GMM is presented next. The last section considers a new approach which is 

APCA-based GMM. This approach involves a combination of the APCA and GMM which seeks 

to ensure monitoring a process using multiple models that are representative of a current 

process state.  

2.1 Application of PCA 

The offline and online application of PCA is shown in the subsequent procedures.  

Offline (Training) 

1. Obtain training data D ϵ Rn×m. 

2. Normalize the training data and retain the means and standard deviations of the process 

variables [see Equations 3-1 to 3-3].  

3. Compute the correlation matrix C of the normalized data X ϵ Rn×m [see Equation 3-4].  

4. Compute the eigenvectors P ϵ Rm×m and eigenvalues λ ϵ R1×m of C [see Equation 3-5].  

5. Retain first (major) 𝜐 PCs �̂� and their corresponding variances �̂�  [see Equation 3-7]. 

6. Compute the retained scores, �̂� ϵ Rn×υ [see Equation 3-6]. 

7. Reconstruct the data from �̂� [see Equation 3-9].   

8. Calculate the squared prediction errors q and its detection threshold qα of the 

reconstructed data �̂� [see Equations 3-11 and 3-14].  

9. Compute the modified Hotelling’s T2 statistics �̂�2 and its detection threshold (�̂�2)𝛼 [see 

Equations 3-12 and 3-13]. 

10. Obtain the validation data  𝑫𝒗 ϵ Rṅ×m (obtained by splitting the original data).  

11. Normalize the validation data using the retained means and standard deviations from 

Procedure 22. 

12. Compute the scores by projecting the normalized data  𝑿𝒗 ϵ Rṅ×m on �̂� [ �̂�𝒗 =  𝑿𝒗× �̂�].  

13. Compute  �̂�2
𝒗 using the retained PCs �̂� and eigenvalues �̂�. 

14. Reconstruct the data and compute the SPE 𝒒𝒗 [see Equations 3-9 and Equations 3-11]. 

15. Test how the derived model parameters (�̂� and �̂�) and thresholds (𝑞𝛼, (�̂�2)𝛼) perform 

for unseen NOC data by verifying with the validation data monitoring statistics and 

readjust the retained parameters and thresholds if possible.  

                                                 
2 Procedure as used in this context refers to a numbered step (item) in the application of a specific algorithm.   
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16. Save model for online deployment.  

Online (Deployment) 

1. Obtain new observation d.  

2. Normalize the sample using the retained means and standard deviations from the 

training stage [see Equations 3-1 to 3-3]. 

3. Compute the scores by projecting the normalized data x ϵ R1×m onto �̂� [ �̂� =  𝒙�̂�]. 

4. Reconstruct the datum [𝒙 = 𝒙 − �̂�]. 

5. Compute the SPE q of the reconstructed datum �̂� [see Equation 3-11]. 

6. Compute �̂�2 using the retained PCs and eigenvalues [see Equation 3-12]. 

7. If a z consecutive number of  �̂�2 and/or q are beyond their respective detection 

thresholds, trigger an alarm. 

The next section considers the application of RePCA for fault detection. 

2.1.1 Application of RePCA  

The application involves making an assumption that the current observation is normal and 

thereby computing updated window parameters, monitoring statistics and critical values.  

To assess whether a new observation is normal or not, the effect of how the addition of the new 

observation perturbs the existing PCA model is then analysed by computing pseudo-updated 

statistics as listed below: 

Let Norm (𝑏 ¦ w, μ, σ) represent the normalization of some variable w using some mean μ and 

some standard deviation σ produce some variable b as shown below:  

                                           𝑏 =
𝑤 −  𝜇

𝜎
 4-1 

Also, let Proj (𝑏 ¦ w, a) denote the projection of some variable w onto some variable a to 

produce some variable b as shown below:  

                                           𝑏 = w × 𝑎  4-2 

1. Compute a new normalized datum by Norm ((𝒙𝑘+1)𝑛𝑒𝑤 ¦ 𝒅𝑘+1, 𝝁𝑘+1, 𝝈𝑘+1)  

2. Compute an old normalized datum by Norm ((𝒙𝑘+1)𝑜𝑙𝑑 ¦ 𝒅𝑘+1, 𝝁𝑘, 𝝈𝑘)  

3. Compute a new score by Proj (�̂�𝑛𝑒𝑤 ¦(𝒙𝑘+1)𝑛𝑒𝑤,(�̂�)𝑘+1)  

4. Using (𝒙𝑘+1)𝑖𝑛𝑡 =  (𝒙𝑘+1)𝑛𝑒𝑤, compute an intermediate score by Proj 

(�̂�𝑖𝑛𝑡 ¦(𝒙𝑘+1)𝑖𝑛𝑡,(�̂�)𝑘)  

5. Compute old score by Proj (�̂�𝑜𝑙𝑑 ¦(𝒙𝑘+1)𝑜𝑙𝑑,(�̂�)𝑘)  



24 

 

6. Compute the reconstructed data for all the scores by Proj ((�̂�𝑘+1)𝑛𝑒𝑤¦�̂�𝑛𝑒𝑤 ,(�̂�)𝑘+1
𝑇 ), Proj 

((�̂�𝑘+1)𝑖𝑛𝑡¦�̂�𝑖𝑛𝑡 ,(�̂�)𝑘
𝑇) and Proj ((�̂�𝑘+1)𝑜𝑙𝑑¦�̂�𝑜𝑙𝑑 ,(�̂�)𝑘

𝑇)  

7. Compute the reconstruction errors for all the reconstructed data. The reconstruction 

errors for  (�̂�𝑘+1)𝑛𝑒𝑤 , (�̂�𝑘+1)𝑖𝑛𝑡  and (�̂�𝑘+1)𝑜𝑙𝑑 are calculated as shown in Equation 

4-3. 

                                           (𝒆𝑘+1)• = (𝒙𝑘+1)• − (�̂�𝑘+1)• 4-3 

Above, • denotes new, old, or int.  

8. Compute the squared prediction errors for all the reconstructed data as shown in 

Equation 4-4. 

                                           (𝑞𝑘+1)• =  (𝒆𝑘+1)•. (𝒆𝑘+1)• 4-4 

 Above, • denotes new, old, or int. 

Compute the modified Hotelling’s T2 statistic for all the scores. Using: 𝜦𝑛𝑒𝑤=𝜦𝑘+1, 

𝜦𝑖𝑛𝑡= 𝜦𝑜𝑙𝑑=𝜦𝑘, 𝑷𝑛𝑒𝑤= (�̂�)𝑘+1, and 𝑷𝑖𝑛𝑡= 𝑷𝑜𝑙𝑑= (�̂�)𝑘, the values for �̂�𝑛𝑒𝑤 , �̂�𝑜𝑙𝑑 and �̂�𝑖𝑛𝑡 

are calculated as shown in Equation 4-5. 

 

                                           

((�̂�2)
𝑘+1

)•= (𝒙𝑘+1)•𝑷•𝜦•
−1𝑷•

𝑇(𝒙𝑘+1
𝑇 )• 4-5  

 

where, 𝜦𝑘+1 and 𝜦𝑘 are respectively the diagonal matrices of (�̂�)𝑘+1 and (�̂�)𝑘 values; 

and • denotes new, old, or int.   

2.1.1.1 Model update and condition to update 

1. If for z consecutive number of ((�̂�2)
𝑘+1

)𝑖𝑛𝑡 > ((�̂�2)𝛼)𝑘 or  (𝑞𝑘+1)𝑖𝑛𝑡  > (𝑞𝛼)𝑘, trigger an 

alarm. Also, set the monitoring statistics of the current observation to ((�̂�2)
𝑘+1

)𝑜𝑙𝑑 and 

(𝑞𝑘+1)𝑜𝑙𝑑.  Set the critical values to (𝑞)𝑘 and ((�̂�2)𝛼)𝑘. 𝑫𝑘 = 𝑫𝑘 for application to next 

observation.  

2. Else, if for z consecutive number of  ((�̂�2)
𝑘+1

)𝑖𝑛𝑡 < ((�̂�2)𝛼)𝑘  or  (𝑞𝑘+1)𝑖𝑛𝑡 < (𝑞𝛼)𝑘, set 

the monitoring statistics of the current observation to (𝑞𝑘+1)𝑛𝑒𝑤 and ((�̂�2)
𝑘+1

)𝑛𝑒𝑤. Set 

the critical values to (𝑞)𝑘+1 and ((�̂�2)𝛼)𝑘+1. 𝑫𝑘 = 𝑫𝑘+1 for application to next 

observation. 

The subsequent outlined offline and online procedure of the application puts the method 

discussed above into perspective.  

Offline (Training) 
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1. Obtain initial window 𝑫𝑘 ϵ 𝑅𝑛×𝑚. 

2. Run PCA on 𝑫𝑘 . 

Online (Deployment)  

1. Obtain new observation 𝒅𝑘+1.  

2. Compute the updated means 𝝁𝑘+1, standard deviations 𝝈𝑘+1 and correlation matrix 𝑪𝑘+1 

of the updated window 𝑫𝑘+1ϵ 𝑅(𝑛+1)×𝑚 [see Equations 3-15 to  3-18]. 

3. Compute and retain the PCs (�̂�)𝑘+1 and variances (�̂�)𝑘+1 of 𝑪𝑘+1. 

4. Compute the retained scores (�̂�)𝑘+1 [see Equation 3-6].  

5. Compute the modified Hotelling’s T2 statistic (�̂�2)
𝑘+1

 and its critical value ((�̂�2)𝛼)𝑘+1.  

6. Compute the intermediate, updated and down-dated statistics [see Procedure to 1 to 8 of 

Section 4.1.1].  

7. Update model parameters if appropriate (using Procedure 1 to 2 of the model update 

conditions presented in Section 4.1.1.1).  

Hyperparameter tuning is done by using validation data (and test data if available) and 

following the online deployment procedure to test how the derived model parameters and 

thresholds perform for unseen NOC data and faults. This is done by verifying with the 

validation data monitoring statistics and readjustments of the retained parameters and 

thresholds if possible.  

The next section, therefore, considers the application of MWPCA which is the other considered 

APCA approach for fault detection. 

2.1.2 Application of MWPCA  

The application of MWPCA for the updated window follows the same pattern as that for 

RePCA. The main differences between the two are the procedure of updating form the previous 

window to the next window.  

The online procedures outlined below provide the guide for updating the initial window.   

Offline (Training) 

The offline application for MWPCA follows the same procedure as listed in the offline 

application for RePCA in Section 4.1.1. 

Online (Deployment) 
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The online application of RePCA holds for that of the MWPCA once the updated window is 

created. The procedure of updating from the initial window is listed as follows: 

1. Obtain new observation 𝒅𝑘+1.  

2. Compute the means 𝝁𝑘−1 and standard deviations 𝝈𝑘−1 and correlation matrix 𝑪𝑘−1 of 

the down-dated window 𝑫𝑘 ϵ 𝑅(𝑛−1)×𝑚 [see Equations 3-19 to 3-21]. 

3. Compute the means 𝝁𝑘+1 and standard deviations 𝝈𝑘+1 and correlation matrix 𝑪𝑘+1 of 

the updated window 𝑫𝑘+1 ϵ 𝑅𝑛×𝑚 [see Equations 3-22 to 3-24]. 

Once the updated window is created, Procedure 1 to 7 of the online application of RePCA as 

listed in Section 4.1.1 is followed. Hyperparameter tuning is done using the same approach as 

that for RePCA.  

The next section considers the application GMM which is a multimodal approach for fault 

detection.  

2.1.3 Application of GMM  

GMM application involves the use of training and validation methods for the offline stage 

before online deployment. The training data is used as an input for the GMM development. The 

maximum likelihood parameter estimates are thereafter approximated using the EM algorithm 

for the various covariance structures and cluster numbers (see Sections 3.5.2.3 and 3.5.2.4). 

The best model is then selected using the mAB criterion (see Section 3.5.2.4) and saved for 

online deployment after the generalisability is checked with a validation data and model 

parameter readjustments made if possible.  

For a new observation, the NLPDF value is computed using the saved model parameters and 

checked against the detection thresholds and thereafter flagged as normal or abnormal. The 

sequence of implementation is shown in the subsequent offline and online procedure.  

Offline (Training) 

1. Obtain training data D ϵ Rn×m. 

2. Compute the maximum plausible cluster number 𝑟𝑚𝑎𝑥 [Equation 3-36]. 

3. Approximate the maximum likelihood estimates 𝜽∗ for the various covariance structures 

coupled with the number of clusters from r = 1 to 𝑟𝑚𝑎𝑥 using the EM algorithm [see 

Section 3.5.2.2]. 

4. Compute and retain the best GMM using the mAB method [see Section. 3.5.2.4]. 

5. Compute the monitoring statistics NLPDF and the global critical value NLPDFα and 

the individual (local) critical values NLPDFα [see Section 3.5.4]. 
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6. Obtain the validation data 𝑫𝒗 ϵ Rṅ×m (obtained by splitting the original data). 

7. Compute the NLPDF using the GMM.  

8. Test the generalisability of the derived model parameters and the detection thresholds 

by verifying with the validation data monitoring statistics and readjust the model 

parameters and thresholds if possible. 

9. Save model for online deployment.  

Online (Deployment) 

1. Obtain new observation d.  

2. Compute the NLPDF and cluster membership for the new observation. 

3. For local detection thresholds, if a z consecutive number of NLPDF values are beyond 

its respective cluster detection thresholds, trigger an alarm. 

4. For a global detection threshold, if a z consecutive number of NLPDF values are beyond 

the detection threshold NLPDFα, trigger an alarm.  

2.1.4 Application of PCA-based GMM 

The initial stages involve computing the scores of the training data as outlined in PCA (Section 

4.1). The computed retained scores are used as an input for fitting the GMM. 

For a new observation, the score is computed using the retained normalization and PCA model 

parameters. The NLPDF of the score is then computed using the GMM and checked against the 

respective global and local limits in a similar procedure to those listed for GMM online 

application for fault detection (see Section 4.1.3). The sequence of implementation is shown in 

the subsequent offline and online procedure.  

Offline (Training) 

1. Obtain the training data D ϵ Rn×m.  

2. Follow Procedure 2 to 5 outlined in PCA offline to compute the retained scores �̂�.  

3. Follow Procedure 2 to 5 outlined in GMM offline on �̂� to compute the monitoring 

statistics and critical value. 

4. Obtain the validation data 𝑫𝒗 ϵ Rṅ×m (obtained by splitting the original data). 

5. Follow Procedure 11 to 12 outlined in PCA to compute the scores.  

5. Follow Procedure 8 of GMM to test the generalisability of the derived model parameters 

and readjust the model parameters and thresholds if possible. 

6. Save model for online deployment.  
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Online (Deployment) 

1. Obtain new observation d. 

2. Follow Procedure 2 to 3 outlined in PCA online to compute the score �̂� corresponding 

to the retained score for the new observation. 

3. Compute the NLPDF and cluster membership. 

4. For local detection thresholds, if a z consecutive number of NLPDF are beyond the 

respective cluster detection thresholds, trigger an alarm. 

5. For a global detection threshold, if a z consecutive number of NLPDF are beyond the 

detection threshold NLPDFα, trigger an alarm. 

The next section considers APCA-based GMM which is the combination of APCA and GMM. 

2.2 APCA-based GMM  

2.2.1 Overview 

APCA-based GMM combines APCA methods with multimodal methods to make provision for 

slow and natural process changes that occur in a multimodal process. Like APCA, the initial 

training data window is periodically augmented with new NOC data. This consequently 

changes the model parameters of the training window and the respective scores of the PCs 

computed thereafter.  

Although the scores of the training data are updated at each interval, the GMM training is only 

done once with a reservoir block of data 𝑫𝑏 ϵ 𝑅𝑐×𝑚 when it becomes available. The 

computation of the probability values of the updated scores is therefore done with the initial 

GMM until a number observations c is available. The constant c is a hyperparameter which 

describes an amount of data that can cause variation in the process and consequently the GMM. 

Moreover, use of a block-wise update keeps computational load reasonable.  

𝑫𝑏 ϵ 𝑅𝑐×𝑚 is therefore obtained by accumulating new observations that exhibit NOC data over 

time. For a time instance, let 𝑫𝑘  ϵ 𝑅𝑛×𝑚 be the data window (initially set at the outset). Let 

𝑫1 ϵ 𝑅𝑐×𝑚  represent the oldest c observations of 𝑫𝑘. The data window after removing 𝑫1 from 

𝑫𝑘 is 𝑫2 = [𝒅𝑐+1, 𝒅𝑐+2, … , 𝒅𝑛]. The updated window matrix is 𝑫𝑘+1 = [𝑫2, 𝑫𝑏].  The updated 

window is then used to create a new GMM which is kept until the next block update.  Figure 

4.1 provides a conceptual diagram of how the PCA model is updated for new observations while 

Figure 4.2  shows how the initial GMM model is updated with the new block of observations. 

(The illustrations are made in the input data space while implementations are done in the 

reduced feature space.)  
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The updated window is used to compute a new GMM with updated parameters and model 

statistics. The model update procedure for the scores and the GMM are presented in the next 

section.  

 

 

Figure 2.1: Sample-wise update of the PCA model for new observations.  

 

 

Figure 2.2: Block-wise update of the GMM for new observations. 

2.2.2 Algorithm 

Adaptation of the PCA model parameters of the updated window follows the procedure outlined 

in MWPCA algorithm in Section 3.4.2 to compute the updated scores 𝑻𝑘+1. The retained 

scores (�̂�)𝑘+1 are then used to compute new monitoring statistics using the initial GMM (this 

is done by computing the probability values of each observation score in (�̂�)𝑘+1. The 

monitoring statistics and thresholds (𝐍𝐋𝐏𝐃𝐅𝜶)𝑘+1 are consequently updated as outlined in 

Section 3.6.2.   
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The GMM is only updated once there are c new observations added to the initial window that 

was used to create the GMM. New GMM parameters are then computed to replace the pre-

existing GMM model parameters.  This updated model will then serve as the current model for 

new observations until another GMM is created.  

2.2.3 Monitoring statistics and control limits 

APCA-based GMM employs the same monitoring statistics and detection thresholds as the 

GMM in Section 3.5.3 but with changing score matrix.  

2.2.4 Fault detection 

APCA-based GMM employs the same fault detection procedure as shown for the GMM in 

Section 3.5.4.  

2.2.5 Application  

The initial training data is normalized and the retained scores are computed. Similar to PCA-

based GMM, the retained scores are used in the GMM development. The NLPDF values for 

each retained score in the training data are computed as well as the individual cluster posterior 

probabilities. The individual cluster posterior probabilities are thereafter used to assign cluster 

membership to each observation. The current vector of critical values for the respective clusters 

are computed and denoted as (𝐍𝐋𝐏𝐃𝐅𝜶)𝑘. These serve as the critical values to be used as in 

local monitoring thresholds, where each observation is monitored by its corresponding cluster 

threshold. The current overall critical value (NLPDF𝛼)𝑘 is computed over all the observations 

in all clusters, which is used in the global monitoring scheme.   

For a new observation, the initial window is updated using the MWPCA procedure and new 

normalization parameters and scores are computed. The updated retained scores (�̂�)𝑘+1 of the 

updated window are used to compute updated thresholds of the monitoring statistic and denoted 

as (𝐍𝐋𝐏𝐃𝐅𝜶)𝑘+1. This is done by calculating the probability values for each score in (�̂�)𝑘+1 

using the pre-existing GMM and assigning cluster memberships using the responsibilities (for 

local monitoring). An appropriate percentile is taken over all the clusters for the global 

threshold and the individual clusters for the local thresholds (see Section 3.5.3)    

The effect of how the addition of the new observation perturbs the existing PCA model is then 

analysed by computing pseudo-updated statistics as listed below: 

1. Compute a new normalized datum by Norm ((𝒙𝑘+1)𝑛𝑒𝑤 ¦ 𝒅𝑘+1, 𝝁𝑘+1, 𝝈𝑘+1)  

2. Compute an old normalized datum by Norm ((𝒙𝑘+1)𝑜𝑙𝑑 ¦ 𝒅𝑘+1, 𝝁𝑘, 𝝈𝑘)  

3. Compute a new score by Proj (�̂�𝑛𝑒𝑤 ¦(𝒙𝑘+1)𝑛𝑒𝑤,(�̂�)𝑘+1)  
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4. Using (𝒙𝑘+1)𝑖𝑛𝑡 =  (𝒙𝑘+1)𝑛𝑒𝑤, compute an intermediate score by Proj 

(�̂�𝑖𝑛𝑡 ¦(𝒙𝑘+1)𝑖𝑛𝑡,(�̂�)𝑘)  

5. Compute old score by Proj (�̂�𝑜𝑙𝑑 ¦(𝒙𝑘+1)𝑜𝑙𝑑,(�̂�)𝑘)  

6. Compute the NLPDF for all the scores (old, new and intermediate). Denoting 𝑛𝑒𝑤, 𝑖𝑛𝑡,     

or 𝑜𝑙𝑑 by •, the NLPDF for �̂�𝑛𝑒𝑤 , �̂�𝑖𝑛𝑡 and �̂�𝑜𝑙𝑑 are calculated as: 

                                     
NLPDF(�̂�• 

) = −log ∑ 𝜚𝑗𝑔𝑗 (�̂�•  
|𝝁𝑗 , 𝑺𝑗)

𝑟

𝑗=1 

 
4-6 

7. Compute the responsibilities of each cluster to assign cluster membership. The 

responsibilities for �̂�𝑛𝑒𝑤 , �̂�𝑖𝑛𝑡 and �̂�𝑜𝑙𝑑  are respectively calculated as: 

                                           
𝑝(𝑔𝑗|�̂�•) =  

𝜚𝑗𝑔𝑗(�̂�•|𝝁𝑗, 𝑺𝑗)

∑ 𝜚𝑝𝑔𝑝(�̂�•|𝝁𝑝, 𝑺𝑝)𝑟
𝑝=1

 
4-7 

Here, • denotes 𝑛𝑒𝑤, 𝑖𝑛𝑡, or 𝑜𝑙𝑑.  

2.2.5.1 Model update and condition to update  

1. For local monitoring thresholds, if a z consecutive number of  NLPDF(�̂�𝑖𝑛𝑡 ) are greater 

than their respective cluster thresholds, trigger an alarm. Set the monitoring statistics of 

the current observation to NLPDF(�̂�𝑜𝑙𝑑 ). 𝑫𝑘 = 𝑫𝑘 for application to next observation. 

2.  Else, if a z consecutive number of  NLPDF(�̂�𝑖𝑛𝑡 ) are lesser than their respective cluster 

thresholds, set the monitoring statistics of the current observation to NLPDF(�̂�𝑛𝑒𝑤 ). Set 

the critical values to (NLPDFα)𝑘+1. Append 𝒅𝑘+1 to 𝑫𝑏 . 𝑫𝑘 = 𝑫𝑘+1 for application to 

next observation. 

3. For a global monitoring threshold, if a z consecutive number of NLPDF(�̂�𝑖𝑛𝑡 ) are 

greater than the detection threshold (NLPDFα)𝑘, trigger an alarm. Set the monitoring 

statistics of the current observation to NLPDF(�̂�𝑜𝑙𝑑 ). 𝑫𝑘 = 𝑫𝑘 for application to next 

observation. 

4.  Else, if a z consecutive number of NLPDF(�̂�𝑖𝑛𝑡 ) are lesser than the detection 

threshold (NLPDFα)𝑘 set the monitoring statistics of the current observation to 

NLPDF(�̂�𝑛𝑒𝑤 ). Set the critical value to (NLPDFα)𝑘+1. Append 𝒅𝑘+1 to 𝑫𝒃 . 𝑫𝑘 = 𝑫𝑘+1 

for application to next observation. 

5. Size the accumulated data 𝑫𝒃 . If the number of observations equal c, set the current 

window 𝑫𝑘+1 as an initial window 𝑫𝑘 and compute new GMM. The updated window 

is applied to a new observation as an initial window. Also set 𝑫𝒃 to an empty set. New 

NOC data are appended to 𝑫𝒃 until a new GMM is created.  
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The sequence of implementation is shown in the subsequent offline and online procedures.  

Offline (Training) 

1. Obtain training data  𝑫𝑘 ϵ Rn×m. 

2. Compute the maximum plausible cluster number 𝑟𝑚𝑎𝑥 [see Equation 3-36]. 

3. Run PCA on  𝑫𝑘 to produce (�̂�)𝑘.  

4. Use (�̂�)𝑘 as input for fitting the GMM.   

5. Approximate the maximum likelihood estimates 𝜽∗ for the various covariance structures 

coupled with the number of clusters (with a maximum value of  𝑟𝑚𝑎𝑥) using the EM 

algorithm [see Section 3.5.2.2]. 

6. Compute and retain the best GMM using the mAB method [see Section. 3.5.2.4]. 

7. Test the generalisability of the derived model parameters and the detection thresholds 

by verifying with the validation data monitoring statistics and readjust the model 

parameters and thresholds if possible. 

8. Save model for online deployment.  

Online (Deployment)  

6. Obtain new observation 𝒅𝑘+1.  

7. Compute the means 𝝁𝑘−1, standard deviations 𝝈𝑘−1  and correlation matrix 𝑪𝑘−1 of the 

down-dated window 𝑫𝑘 ϵ 𝑅(𝑛−1)×𝑚 [see Equations 3-19 to 3-21]. 

8. Compute the updated means 𝝁𝑘+1, standard deviations 𝝈𝑘+1and correlation matrix 

𝑪𝑘+1 of the updated window 𝑫𝑘+1ϵ 𝑅𝑛×𝑚 [see Equations 3-22 to 3-24]. 

9. Compute and retain the PCs (�̂�)𝑘+1 and variances (�̂�)𝑘+1 of 𝑪𝑘+1 [Equation 3-8]. 

10. Compute the retained scores (�̂�)𝑘+1 of the new window [Equation 3-6].  

11. Compute the monitoring statistic (𝐍𝐋𝐏𝐃𝐅)𝑘+1 and cluster membership of each t 

in (�̂�)𝑘+1 using the existing.  

12. Compute the updated global critical value (NLPDF𝛼)𝑘+1  and local critical 

values(𝐍𝐋𝐏𝐃𝐅𝛼)𝑘+1 . 

13. Compute the intermediate, updated and down-dated statistics [Equations 4-8 to 4-9]. 

14. Update model parameters if appropriate (using the stated Procedure 1 to 5 of the model 

update condition).  

Hyperparameter tuning is done using the same approach as that for RePCA (in Section 4.1.1).   

In summary, the applications of the various approaches considered were presented with the 

outline of the training and deployment steps provided.    
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ABBREVIATIONS AND SYMBOLS 

Acronym Description 

AIC Akaike’s Information Criterion 

APCA  Adaptive Principal Component Analysis 

BA Best Approximation 

BIC  Bayesian Information Criterion 

CA Closest Approximation 

CPCA Conventional Principal Component  

   CSTR          Continuous Stirred Tank Reactor 

CUSUM Cumulative Sum 

DD          Detection Delay 

DPCA Dynamic Principal Component Analysis 

EM Expectation−Maximization 

EWMA Exponentially Weighted Moving Average 

FAR False Alarm Rate 

FJ Figueiredo-Jain 

GEM Greedy Expectation−Maximization 

GMM Gaussian Mixture Model 

ICA Independent Component Analysis 

LCL Lower Control Limit 

mAB Minimum AIC-BIC criterion 

MAR Missing (Missed) Alarm Rate 

MPCA  Multiple Principal Component Analysis 

MSPC Multivariate Statistical Process Control 

MWPCA Moving Window Principal Component Analysis 

NLPDF Negative Logarithm of Probability Density Function 

NOC Normal Operating Conditions 

         PC Principal Component 

PCA Principal Component Analysis 

PDF Probability Density Function 

RePCA Recursive Principal Component Analysis 

ROC  Receiver Operator Characteristic 

SPC Statistical Process Control 

SPE Squared Prediction Error 

SVD Singular Value Decomposition 

TAR  True Alarm Rate 

UM Update Method 

UCL Upper Control Limit 
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Symbol Description 

(.)k Current value 

(.)k+1 Next (or updated) value 

(.)k-1 Previous ( or down-dated) value 

(�̂�2)𝛼, Modified Hotelling T-square statistic critical value 

�̂�2(�̂�2) Modified Hotelling T-square statistic vector (scalar) 

ᵹ𝑖𝑗 Responsibility of cluster j for observation i 

𝐍𝐋𝐏𝐃𝐅𝜶 Negative-logarithm  PDF critical value vector 

𝐹𝛼(𝜐, 𝑛 − 𝜐) The upper 100α % critical point of the F-distribution 

�̂�  Retained principal components matrix 

�̂� Retained score matrix 

�̂�(�̂�) Reconstructed data matrix (vector) 

�̂� Retained eigenvalues vector 

𝜽∗ Maximum likelihood estimates for GMM parameters 

𝜽𝑡 Initial GMM parameter estimates   

C Correlation matrix 

D(d) Input data matrix (vector) 

d1 Oldest observation of in input matrix 

E(e)  Reconstruction error matrix (vector) 

ɣ Number of parameters in the covariance matrix 

gj Gaussian distribution of cluster j 

L(.) Likelihood function  

Lυ Cumulative variance explained by υ principal components 

m Number of process variables 

n Number of observations   

ṅ Number of observations for validation data 

P  Matrix of eigenvectors 

p(.)  Probability density function  

q(q) SPE statistic vector (scalar) 

r Number of modes  

rmax Maximum plausible number of modes 

S Covariance matrix 

T PCA score matrix 

X(x) Normalized data matrix (vector) 

Ẑ(ẑ) Latent variables matrix (vector) 

ẕα Normal deviate corresponding to the (1 − α) percentile 

α  Significance level of probability distribution  

γ Number of parameters of the means and mixing proportions  

λ  Vector of eigenvalues   

μ(μ)     Mean vector(scalar) 

σ  Standard deviation vector 

τ  Tolerance level for EM  

 υ  Number of retained principal components  

𝑧 Consecutive number of observations required to trigger an alarm 

𝚺 Diagonal matrix of 𝛔 

𝜚 Mixing weight of a Gaussian cluster  
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